The ATLAS Silicon Pixel Sensors

Sally Seidel, Igor Gorelov, Martin Hoeferkamp, Steve Worm University of New Mexico, Albuquerque

CDF RunIIb Pixel Meeting September 20, 2000 FNAL

Contents

- Overview of the pixel detector system
 - ◆ requirements
 - ◆ layout
- Sensor design
 - ◆ concept
 - isolation technique
 - bias grid
 - radiation hard sensors
- Quality assurance
 - goals
 - prototype production wafers

- ◆ *I-V* measurements
- measurements on test structures
- statistics for Prototype 2 wafer measurements
- Test beam studies
 - charge collection
 - depletion depth
 - efficiencies
 - ◆ spatial resolution
- UNM capabilities
- CDF pixels
- Summary

Overview - requirements ...

LHC environment

- High Luminosity 10³⁴ cm⁻²s⁻¹
 - 25 interactions/bunch crossing
 - high event multiplicity
 - ◆ 40 MHZ Bunch Crossing freq.
 - ◆ High radiation region close to I.P.
 - o damage equivalent dose is up to $10^{15} n_{eq}/cm^2$ in 10 years of LHC operation
 - even higher damage in innermost layer 10¹⁵ n_{eq}/cm² in 5 years

Robust pattern recognition

- low ambiguity space points
- low occupancy high granularity

Excellent transverse impact parameter resolution and very good 3D-vertexing

• $S_{r-f} = 12 \text{ mm}, S_z = 60 \text{ mm}$

Excellent b-tagging efficiency of ~50% with rejection factor against light quark/gluon jets of ~100.

Good b-triggering.

Overview - requirements ...

Pixels have ...

- very small capacitance/pixel due to high segmentation good S/N
 - pixel areas 400 mm vs strip length of 10cm (~<1/200)
 - ◆ the input cap. load to FE ~200-300fF incl. tot. det-r and parasitic capacitances (10 mm betw. det-r and FE chip planes)
 - much lower noise and S/N = 19Ke/(noise 300e+thr.rms 200e)~50 for 250mm Si . After lifetime fluence S is expected to be ~6Ke
 - work thresholds of 3Ke ...2Ke (>5s)
- rad. hardness
 - high breakdown voltages of ~600V made possible with 'moderated p-spray' isolation technique
 - n^+ implants on n substrate

- ♦ work at partial depletion for 'n+-on-n' sensors (no p- sensitive areas!) still with 6Ke signals and 2Ke thresholds
- oxygenation of Si reduces N_{eff} and V_{depl}
- ◆ lower (w.r.t. to strips) leakage currents
 worst case at lifetime fluences is
 15nA at -6°C
- ◆ lower power budget of ~40mW/pixel

Overview - layout ...

- Support structure
 - flat panel carbon composite
 - light weight

- Barrel: 3 layers
 - ◆ radii: 12.7 cm, 9.3 cm, 4.15cm (B-layer)
- 2 x 5 disks made of sectors
- 2228 modules
 - each module with 47232 pixels
 - 1.4×10^8 pixels
 - $2.3 m^2$ of silicon
- 1.8% X_0 per layer
- coverage up to h = 2.5

Sensors - concept ...

• n⁺ pixels on n substrate

- ◆ substrate thickness 250mm (200 mm for B-layer), wafer diameter 4 inch.
- ♦ before irradiation: junction on back side with p⁺ implantation
- irradiated detectors: bulk type inversion junction on pixel side

• pixel cell 50 x 400 mm²

- defined by the electronic cell size
- with a pitch of 50mm
- ◆ 12mm opened area for bump bonds

• bump bonding

- ◆ IZM: PbSn bumps
- ◆ Alenia Marconi Systems: In bumps
- ◆ 6-20 mm diameter

bias voltage applied to p⁺ side

- pixels held at ground
- low potential difference between sensor and electronics

Sensors - concept ...

(not selected) p-on-n

before irradiation:

after irradiation:

- have to be operated (almost) fully depleted
- potential drop on the read out side
- only single sided processing necessary

ATLAS option n-on-n

- can be operated partially depleted
- potential drop on the back side
- double sided processing needed

Sensors - isolation techniques

During irrad.: increase of E-fields due to increase of ox.-Si charge; increase of effective doping concentration $N_{\rm eff}$

p-stop

p-spray

moderated p-spray

before irr.: low E-field

high E-field

low E-field

ifter irr.

: high E-field

low E-field

low E-field

Sensors - testability, bias grid

- The need to test sensor alone, before bonding with FE chip
- bias grid on a sensor of <u>a p-</u> <u>spray design</u>
 - to apply uniform bias voltage to all pixels on a tile sensor
 - ◆ n⁺-implanted path throughout array and special n⁺-dots are formed for every pair of pixels of neighboring columns
 - pixels get biased through a "punch-through" mechanism

Sensors - radiation hard

Oxygenated sensors

- based on the studies of RD48 (ROSE) Collab.
- reduce effective doping dose
 - lower depletion voltage
 - improvement of charge collection after irradiation
 - ◆ lower bias and leakage current
 - extended detector lifetime
- Oxygenated sensors prototypes produced
 - O_2 thermal diffusion Si to be kept 24 hrs at 1150°C in pure O_2
 - already irradiated up to 5.6×10^{14} n_{ea}/cm^2
 - currently data are collected in the test beam to measure:
 - depletion depth vs V
 - o charge collection
 - o efficiency
 - o and resolution

A factor of ~2 lower bias voltage for oxygenated sensors after ~10¹⁵ n/cm²

Ref.: M.Moll, PhD thesis, Hamburg 1999

Quality Assurance - goals

QA procedure for sensors at a mass production stage to guarantee a high sensor quality.

All wafers:

- visual inspection
- wafer thickness and flatness
- I-V of each tile and 'single chip' to measure V_{bd}

Detailed tests on representative samples using special test structures:

- monitor rad. bulk damage
 - ◆ I-V of 'mini chips' before and after irrad. from every batch
 - I-V,C-V on diodes- V_{depl} and resistivity

Prototype 1 Wafer with two tiles, also in the left bottom corner is seen the test structure with four circles - two MOS pads and two GateControlDiodes ...

Quality Assurance - goals ...

- monitor ionizing damage with 50kRad low energy electron dose positive charge build up in oxide layers.
 - ♦ MOS pads oxide breakdown (I-V curve) voltage; capacitance C-V measurement to determine flat-band voltage V_{FB}
 - ◆ I-V with gate control diodes, GCD, to monitor oxide-Si interface current around V_{FB} before and after irrad.
 - ♦ MOSFET test field measurement of n- to p- type inversion voltage $V_{threshold}$ to calculate the p-spray dose (using also measured above V_{FB}) before and after irrad.

The Production Wafer (gds file)

- 4 inch diameter
- with three tiles to be used as the pixel sensors
- and a number of test structures

Quality Assurance - typical I-V's for non-irradiated tiles

Bias (V)

Breakdown voltage for Tile sensor with normal p-spray of Prototype 1.

$$V_{bd} = 180 V$$

Breakdown voltage for Tile sensor with moderated p-spray of Prototype 2.

$$V_{bd} = 410 \ V$$

Quality Assurance - V_{bd} for irradiated vs non-irradiated SC

Tile-like topology 'single chip' sensors (1/16 scale of the tile), Prototype 2, non-irradiated. Vendors - CiS and IRST.

The same sensors irradiated to 9*10¹⁴ 1MeV n/cm². Vendors - CiS and IRST.

Oxygenated silicon.

Unirradiated ATLAS Prototype 2 Oxygenated Devices, Temp Corrected to +200

Irradiated ATLAS Prototype 2 Oxygenated Devices, Temp Corrected to +200

Quality Assurance - statistics for Prototype 2 measurements

Statistics collected over the labs of ATLAS Pixel Collab. For Prot.2 tile sensors classified by $Q_{\rm flag}$.

$$Q_{flag}$$
 -1 0 +1
 V_{bd} <50V (50...150)V >150V

Percentage of Prototype 2 tiles for every quality flag $Q_{flag} = -1$, 0, +1. "Small Dot" design.

Beam Test Studies - charge collection

Prototype 2 wafer Oxygenated - V_{bias} -400 V Fluence 5.6 10^{14} n_{eq} /cm²

Charge collection uniformity

- track position extrapolated to the pixel detector
- for each position bin the average cluster charge is computed
- the signal is of ~18000e⁻

Beam Test Studies - charge collection

Prototype 2 wafer
Not Oxygenated - V_{bias} -150 V
Fluence 0

Prototype 1 wafer Old Design (not oxy)- V_{bias} -600 V Fluence 10 $10^{14} \, n_{eq}$ cm²

Beam Test Studies - depletion

Depletion depth

Computed depth of the charge

- After $10^{15} n_{eq}/cm^2$ the depletion depth is 190 mm @ -600 V
- PRELIMINARY: oxygenated sensor (250 mm thick) fully depleted @ -400 V after 5.6 10¹⁴ n/cm²

Beam Test Studies - Efficiency (sensor and analog part)

Efficiency losses:

- missing hits
 - ◆ low pulse height below threshold
 - ◆ dead time
- wrong bunch crossing
 - time walk

Efficiency measurement:

- look for hits where expected
- measured as a function of the particle-clock time phase

not Irradiated - Thr. 3 Ke

efficiency	<i>99.1</i>	Losses	0.9
1 hit	81.8	0 hits	0.4
2 hits	<i>15.6</i>	not matched	0.1
>2 <i>hits</i>	<i>1.7</i>	not in time	0.4

Efficiency (sensor and analog part)

Irradiated 10¹⁵ n/cm² - Thr. 3 Ke

efficiency	95.3	Losses	4.7
1 hit	86.3	0 hits	2.2
2 hits	7.6	not matched	0.1
>2 <i>hits</i>	<i>1.4</i>	not in time	2.4

Irradiated 10^{15} n/cm² - Thr. 3 Ke

efficiency	98.4	Losses	1.6
1 hit	94.2	0 hits	0.4
2 hits	<i>3.1</i>	not matched	0.0
>2 hits	1.1	not in time	1.2

Beam Test Studies - Spatial Resolution

- Resolution at 0° (Thresh. 3 Ke)
 - depends on the ratio: 2 hits to single hits
 - sharing is within ± 3 mm for 200 mm thick sensors
 - ~ 15 % of double hits
- At larger angles the charge sharing region extends
- Depleted region extension affects the multiple hits rate (radiation damage)
- Magnetic field modifies charge sharing (Lorentz angle)
- Analog measurement of the charge (ToT) improves resolution

UNM pixel laboratory...

- People: 1 electronic engineer, 3 physicists, several students.
- Design: Cadence software and installation of a Sun workstation in progress
- Test: clean room, probe stations and test equipment for full ATLAS pixels QA measurement plan
- Expertise:
 - ◆ CDF SVX II strip detector development and tests
 - ◆ ATLAS Pixel Sensor Prototype design and tests

CDF -specific Pixel Sensors - management issues ...

- P-spray patent issues MPI at Muenchen lab and ATLAS Collab.
- cost estimate per wafer communicate with CiS, TESLA and ATLAS Pixel Collab.
- Design baseline six ATLAS-like half tiles per wafer
 - define the cell size to be determined by FE chip (bump- bonded with sensor)
- Quantities depends on sharing of a wafer area with other interested parties, approximately 50-150 wafers for late 2001
 - possible overlap with ATLAS pixels production schedule

Summary

- The ATLAS pixel sensor design with rad. hardness up to $\sim 10^{15}$ n/cm² fluencies ensured is ready.
- The production QA plans have been developed and UNM lab facilities are ready for production testing.
- CiS, Seiko, IRST and TESLA produced prototype wafers
- UNM can provide CDF Collaboration with a necessary experience